B.Sc. DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - APRIL 2015
MT 6606-COMPLEX ANALYSIS
Date : 15/04/2015
Time : 09:00-12:00
Dept. No. \square Max. : 100 Marks

PART - A

Answer ALL questions. Each question carries 2 marks.
(10 x $2=20$ marks)

1. Show that the function $f(z)=\operatorname{Re} z$ is nowhere differentiable.
2. When do we say that a function $\mathrm{u}(\mathrm{x}, \mathrm{y})$ is harmonic.
3. Find the points where the mapping $w=z+\frac{1}{z}$ is conformal. Also find the critical points.
4. Define a bilinear transformation.
5. Evaluate $\int_{c} \frac{d z}{z}$ where c is the circle $|z|=r$ described in the positive sense.
6. State Cauchy's inequality.
7. Expand $\cos \mathrm{z}$ by Taylor's series about $\mathrm{z}=0$.
8. Define essential singularity with an example.
9. Write down the formula for evaluating the residue at a pole of order m .
10. Calculate the residue of $\frac{z+1}{z(z-2)}$ at its poles.

PART - B

Answer any FIVE questions. Each question carries 8 marks.
11. Prove that the function $f(z)=\left\{\begin{array}{c}\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}} \\ 0 ; z=0\end{array} ; z \neq 0\right.$ satisfies C-R equations at the origin but $f^{\prime}(0)$ does not exist.
12. Show that $u=2 x-x^{3}+3 x y^{2}$ is harmonic and find its harmonic conjugate.
13. Prove that any bilinear transformation can be expressed as a product of translation, rotation, magnification or contraction and inversion.
14. Evaluate $\int_{c}|z| \bar{z} d z$ where c is the closed curve consisting of the upper semicircle $|z|=1$ and the line segment $-1 \leq x \leq 1$.
15. State and prove the Maximum Modulus theorem.
16. Expand $f(z)=\frac{z}{(z-1)(2-z)}$ in a Laurent's series valid for (i) $1<|z|<2$, (ii) $|z|>2$.
17. State and prove the Fundamental theorem of algebra.
18. Using contour integration along the unit circle ,show that
$\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}=\frac{2 \pi}{3}$.

PART - C

Answer any TWO questions. Each question carries 20 marks.
19. a) State and prove the sufficient conditions for $\mathrm{f}(\mathrm{z})$ to be differentiable at a point.
b) Find the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ if $u+v=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$.
20. a) State and prove Cauchy's integral formula.
b) Evaluate $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$ where c is the circle $|z|=3$.
21. a) State and prove Laurent's series.
b) State and Prove Rouche's Theorem.
22. a) State and prove Cauchy Residue theorem.
b) By contour integration, show that $\int_{0}^{\infty} \frac{d x}{1+x^{4}}=\frac{\pi}{2 \sqrt{2}}$.

