LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

SIXTH SEMESTER – APRIL 2015

MT 6606 - COMPLEX ANALYSIS

Date : 15/04/2015 Time : 09:00-12:00 Dept. No.

Max.: 100 Marks

(10 x 2 = 20 marks)

PART - A

Answer ALL questions. Each question carries 2 marks.

- 1. Show that the function $f(z) = \operatorname{Re} z$ is nowhere differentiable.
- 2. When do we say that a function u(x,y) is harmonic.
- 3. Find the points where the mapping $w = z + \frac{1}{z}$ is conformal. Also find the critical points.
- 4. Define a bilinear transformation.
- 5. Evaluate $\int \frac{dz}{z}$ where c is the circle |z| = r described in the positive sense.
- 6. State Cauchy's inequality.
- 7. Expand $\cos z$ by Taylor's series about z=0.
- 8. Define essential singularity with an example.
- 9. Write down the formula for evaluating the residue at a pole of order m.

10. Calculate the residue of $\frac{z+1}{z(z-2)}$ at its poles.

PART - B

Answer any FIVE questions. Each question carries 8 marks.

(5 x 8 = 40 marks)

11. Prove that the function $f(z) = \begin{cases} \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}; z \neq 0 \text{ satisfies C-R equations at the origin} \\ 0; z = 0 \end{cases}$

but f'(0) does not exist.

- 12. Show that $u = 2x x^3 + 3xy^2$ is harmonic and find its harmonic conjugate.
- 13. Prove that any bilinear transformation can be expressed as a product of translation, rotation, magnification or contraction and inversion.
- 14. Evaluate $\int_{c} |z| \overline{z} dz$ where c is the closed curve consisting of the upper semicircle |z| = 1 and the line segment $-1 \le x \le 1$.
- 15. State and prove the Maximum Modulus theorem.

16. Expand
$$f(z) = \frac{z}{(z-1)(2-z)}$$
 in a Laurent's series valid for (i) $1 < |z| < 2$, (ii) $|z| > 2$.

- 17. State and prove the Fundamental theorem of algebra.
- 18. Using contour integration along the unit circle ,show that

$$\int_{0}^{2\pi} \frac{d\theta}{5+4\sin\theta} = \frac{2\pi}{3}.$$

<u>PART - C</u>	
Answer any TWO questions. Each question carries 20 marks.	(2 x 20 = 40 marks)
19. a) State and prove the sufficient conditions for $f(z)$ to be differentiable at a point.	
b) Find the analytic function $f(z) = u + iv$ if $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$.	(10+10)
20. a) State and prove Cauchy's integral formula.	
b) Evaluate $\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-2)} dz$ where c is the circle $ z = 3$.	(12+8)
21. a) State and prove Laurent's series.	

b) State and Prove Rouche's Theorem.

22. a) State and prove Cauchy Residue theorem.

b) By contour integration , show that
$$\int_{0}^{\infty} \frac{dx}{1+x^4} = \frac{\pi}{2\sqrt{2}}.$$
 (8+12)

(12+8)

\$\$\$\$\$\$